Modeling of a discharging cavity in a dielectric material exposed to high electric fields
نویسندگان
چکیده
Partial discharges are localized electric discharges that do not bridge the electrodes. For high voltage components measurements of partial discharges are commonly used to diagnose the condition of the insulation system. Traditionally partial discharges are measured at a single frequency of the applied voltage. However the rather newly developed technique of Variable Frequency Phase Resolved Partial Discharge Analysis (VF-PRPDA) makes it possible to measure partial discharges at variable frequency of the applied voltage. The benefit of varying the frequency is that more information about the state of the insulation system is obtained than from measurements at a single frequency. This paper presents a model of partial discharges in a cavity at variable applied frequency. The aim of the model is to increase the physical understanding of how the frequency of the applied voltage affects the partial discharges in the cavity. This paper studies the influence from the statistical time lag on the frequency dependent discharge sequence and results from simulations are compared with measurement data. The model is a 2D time dependent FEMLAB model in PDE mode which is handled from a MATLAB script.
منابع مشابه
Numerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection
The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...
متن کاملEvaluation of Extremely Low Frequency (ELF) Electromagnetic Fields and Their Probable Relationship with Hematological Changes among Operators in Heavy Metal Industry
Introduction: It is important that biological and health effects from the induction of currents and fields in the body by extremely low frequency (ELF) fields are fully explored to determine the effects produced at the molecular, cellular and organ levels. The objective of this study was to evaluate the intensity of ELF electromagnetic fields and its probable relationship with hematological cha...
متن کاملEFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS
Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...
متن کاملStudy of leaky dielectric droplet behavior under an electric field: effect of viscosity and electric conductivity ratios
In this research, hydrodynamic behavior of a leaky dielectric droplet under an electric field is simulated. The level set method is used for interface tracking and the ghost fluid method is used for modeling discontinuous quantities at interface. Using Taylor’s leaky dielectric model, electric field and electric force at the interface is calculated. Simulation results show the droplet deformati...
متن کاملAssessment of Extremely Low Frequency (ELF) Electric and Magnetic Fields in Hamedan High Electrical Power Stations and their Effects on Workers
Introduction: Public and occupational exposure to extremely low frequency (ELF) electric and magnetic fields induced by electrical equipment is a significant issue in the environment and at the workplace due to their potential health effects on public health. The purpose of this study was assessment of the electric and magnetic fields intensities and determination of mental and psychological ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005